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An exact solution to the problem of radiation from a cylindrical duct has been
available using the Wiener}Hopf technique for many years, and a number of
approximate methods can also be considered. When parameter spaces involving
high frequency are required, it is possible to use ray-theory-based techniques to
solve the problem. Keller proposed such a method, introducing a geometrical
theory of di!raction (GTD) which extended the concept of geometrical optics to
account for di!racted rays. When a ray propagates inside the duct, it will re#ect o!
the duct rim creating a Keller cone of singly di!racted rays, allowing formulae to be
obtained for the singly di!racted "eld using Keller's GTD. Expressions for the
singly di!racted "eld are presented, and then compared with the exact solution for
a range of parameters. The choice of parameters is governed by a set of mode
angles which are used in describing geometrically how a ray propagates through
the duct and out into free space.

( 2000 Academic Press
1. INTRODUCTION

An exact solution to the problem of sound radiation from a cylindrical duct has
been available for many years. It has been derived using the Wiener}Hopf
technique, "rstly by Levine and Schwinger [1], who concentrated on the case of
non-spinning modes. Weinstein [2] derived formulae for non-spinning modes at
a similar time, but also presented some results for spinning modes. Later, workers
to have used this technique include Lansing [3] and Homicz and Lordi [4].
Homicz and Lordi gave some examples of directivity patterns for a choice of modes
relevant to the consideration of turbofans.

A number of approximate techniques exist which can be used to solve this
problem. These range from the more complicated methods that require some
knowledge of the exact solution, such as Weinstein's; function, to methods which
take a more simplistic view of the problem. The best known of these is the Kirchho!
approximation, "rst identi"ed by Tyler and Sofrin [5]. Instead of a semi-in"nite
cylindrical duct, a circular aperture in a plane screen is used and the radiated "eld is
determined by a radiation integral evaluated over the aperture. The main
disadvantage of this method is that it is not possible to determine the radiated "eld
behind the duct rim. Weinstein's ; function is derived by simplifying the kernel
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factors that occur when using the Wiener}Hopf technique by using the method of
steepest descent. This results in an integral that can be expressed in terms of
Weinstein's canonical ; function whose parameters are dependent upon the
particular kernel under consideration. When determining the accuracy of the
approximations, the most common approach has been to determine the behaviour
of the formula as k

0
a is altered, since all these methods are high-frequency

approximations. In following this approach, no consideration is made as to how an
increase in frequency, while other parameters are "xed, will a!ect the ray structure
of the propagating mode.

Using the modal angles described by Chapman [6], it is possible to express the
propagating mode in terms of its geometrical progression along the duct. Some
aspects of the ray structure have been derived by previous authors; in particular the
mode ray angle, denoted here by h

ms
, has been shown to be particularly relevant

[2, 7}9]. This angle is the polar mode angle of the propagating ray, and gives an
approximate location for the main beam in the far "eld. To describe a ray in three
dimensions, it is necessary to consider more than one angle. A ray propagating
within the duct will form a piecewise linear helix within an outer annulus
determined by the duct and an inner caustic cylinder. An azimuthal mode angle
denoted by /

ms
is de"ned, where each segment of the helix is situated on planes

tangent to the inner caustic at /
ms

to the meridional plane. When the ray strikes the
rim of the duct, it will create a Keller cone of di!racted rays with a half-angle of
n/2!h

m
, giving rise to the term &&quiet-zone angle'' to describe h

m
. The relevance of

the mode ray angle, h
ms

, and the quiet zone angle, h
m
, can clearly be seen in the

directivity plots obtained by Homicz and Lordi [4]. In an earlier paper [10],
the author presented formulae for the radiated power per unit solid angle
for approximate solutions obtained using Weinstein's; function and the Kirchho!
approximation. The accuracy of these formulae were then compared with
the Wiener}Hopf solution in parameter spaces dependent upon the angles h

ms
and /

ms
.

When considering parameter spaces involving high frequency, it is possible to
consider a ray-theory-based approach to the problem. An extension to geometrical
optics was derived by Keller [11, 12] 40 years ago, and is known as Keller's
geometrical theory of di!raction (GTD). In his classical papers, the problem of
di!raction by a circular aperture in a plane screen with a normally incident plane
wave was addressed. Keller hypothesized that when a plane wave strikes an edge at
an oblique angle, a cone of di!racted rays results which is obtained by rotating the
continuation of the incident ray about the tangent to the edge. A ray on this cone
will strike the edge again leading to the creation of a cone of doubly di!racted rays.
Thus, Keller also derived formulae for doubly and multiply di!racted rays. It is well
known that GTD has limitations since this simple technique produces results that
are not valid at shadow boundaries or caustics. Although not considered in this
paper, there are a number of techniques which can be used to modify the GTD
solution in these regions, though these add signi"cant complexity to the formula.
Kouyoumjian and Pathak [13] have determined a method which introduces
a multiplicative factor to the di!raction coe$cient that is zero at shadow
boundaries, thereby cancelling out the singularity in the GTD method at that
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region. An alternative approach involves the use of the ansatz of Ahluwalia et al.
[14] which is a correction to the total "eld giving a di!erent result in the region
near a shadow boundary than that obtained by the Kouyoumjian and Pathak
method. To deal with the breakdown of the formulae near caustics, Keller
presented a formula valid for axial caustics, and this was extended to o!-axial
caustics by Albertsen et al. [15].

Since a propagating mode lies on a Keller cone after being di!racted by the rim
of the duct, it is natural to introduce a co-ordinate system based on the Keller
cones, which is derived in section 2. Expressions for the singly di!racted "eld can
then be obtained using Keller's GTD. The accuracy of this solution can then be
compared with the exact solution for the same parameters used in Reference [10].

2. CONAL CO-ORDINATES AND GEOMETRY

2.1. NOTATION

Consider an acoustic mode propagating in a semi-in"nite cylindrical duct of
radius a, denoted by A

ms
, such that

p"p
0
e~*ut`*m/

r`*kxx0J
m
(k

r
r). (1)

Here p
0

is proportional to the pressure amplitude, k
x
is the axial wavenumber and

k
r
is the radial wavenumber. The incident mode must be a solution of the wave

equation, which gives the relationship k
x
"Jk2

0
!k2

r
. This is an important

expression that is used to determine whether a mode is cut-on (or propagating),
when k

x
is real, or if a mode is cut-o!. The boundary condition Lp/Lr"0 on r"a is

used to show that j@
ms
"k

r
a, where J@

m
( j@

ms
)"0. This introduces the radial order, s,

of the propagating mode and one should note that k
x
,kms

x
. The notation A

ms
is

used to determine the azimuthal and radial order de"ning a particular incident
mode, illustrated for the selection of radiated "eld directivity patterns presented
later. The Bessel identity J

m
(z)"1

2
(H (1)

m
(z)#H (2)

m
(z)) is used to re-write the incident

mode so that it now only contains the portion propagating outwardly in a radial
direction (the "rst term in the parentheses here). Hence, omitting the superscript (1)
from H (1)

m
hereafter, and with /@

r
"/

r
!/ one may write

p"
p
0
2

e~*ut`*m(`*m({r`*kxx0H
m A

j@
ms
a

rB. (2)

A modal ray structure is used to describe the propagation of the ray along the duct,
and the angles h

m
, h

ms
and /

ms
are introduced, as de"ned by Chapman [6], where

sin h
m
"

m
k
0
a
, sin h

ms
"

j@
ms

k
0
a
, sin/

ms
"

m
j@
ms

. (3)

These angles are illustrated in Figure 1, whilst a comprehensive description of their
relationship to the propagating mode is given in reference [10].



Figure 1. Ray geometry: (a) End view of duct showing Keller cone at angle h
m

to the y-axis and
portion of propagating ray at angle /

ms
to the y-axis, (b) Side view of duct showing ray to be

a piecewise linear helix with each segment at angle h
ms

to duct axis.

Figure 2. 3-D conal co-ordinates (s, /
r
, /

c
) with Cartesian co-ordinates (x, y, z).
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2.2. CO-ORDINATE SYSTEM

When the ray strikes the rim of the duct, it creates a Keller cone of di!racted rays
which is obtained by extending the incident ray and rotating it about the tangent to
the rim at the point of di!raction. It is therefore natural to de"ne a co-ordinate
system based upon the Keller cone. To describe a position in space, we use the
co-ordinates (s, /

r
, /

c
) where s represents the length along the cone from its vertex,

/
r
gives the location of the vertex of the cone on the duct rim and /

c
measures the

angle around the cone, as illustrated in Figure 2. A point on the cone described
using conal co-ordinates can be related to Cartesian co-ordinates by

x"s cos h
m

cos/
c
,

y"s(cos h
m

sin/
c
cos/

r
!sin h

m
sin/

r
)#a cos/

r
,

z"s(cos h
m

sin/
c
sin/

r
#sin h

m
cos/

r
)#a sin /

r
. (4)

If we consider a ray originating at a point on the rim given by x
0
"0, y

0
"a cos/

r
,

z
0
"a sin/

r
, the distance from the rim to a point in space can be found using
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s2"(x!x
0
)2#(y!y

0
)2#(z!z

0
)2. Noting that sAa, an expression for s in the

far "eld expressed in spherical co-ordinates, (R, h, /), can be obtained using the
binomial theorem such that

s+R!a sin h cos/@
r
. (5)

Here s is the distance to a point P measured from the duct rim, whereas R is
measured from the centre of the duct rim. For large R, one can clearly see that
s+R, as expected. Comparing this with the conal co-ordinate system introduced
above, and recalling that x"R cos h, it can be noted that cos h+cos h

m
cos/

c
in

the far "eld. Hence

cos h
m

sin/
c
+$Jcos2 h

m
!cos2 h. (6)

Substituting the expressions for the conal co-ordinates given in equation (4) into
R2"x2#y2#z2 gives R2"s2#2sa cos h

m
sin/

c
#a2. Expanding this equation

using the binomial theorem leads to

R+s#a cos h
m

sin/
c
. (7)

To O(1), equations (5) and (7) agree provided

cos/@
r
"

1
sin h

cos h
m

sin/
c
+$

1
sin h

Jcos2 h
m
!cos2 h (8)

using equation (6) to simplify /@
r

in the far "eld. This relationship can also be
derived by expanding the O (1) term in equation (5) and substituting the terms in
/ with expressions obtained from the y and z terms of the conal co-ordinates when
s+R.

2.3. EXACT SOLUTION

The exact solution used to determine the accuracy of the Keller formula is
obtained using the Wiener}Hopf technique, and expressed as a radiated power per
unit solid angle such that

P
wh

(h)"
Pwh

i
k
0
ks
x

n2(k
0
cos h!ks

x
)2

J@
m
(k

0
a sin h)

DH@
m
(k

0
a sin hD

N
<
n/1
Os

kn
x
#ks

x
kn
x
!ks

x

]
N
<
n/1

kn
x
!k

0
cos h

kn
x
#k

0
cos h

eR *S(ksx a)~S(k0a cosh)+ , (9)

where N denotes the radial order of the highest propagating mode and Pwh
i

is the
power of the incident mode, of the form stated in equation (1). The function R[S] is
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given by

R[S(f)]"
1
n

P P
k0a

~k0a

X(ia)
k@!f

dk@, k@"ka, (10)

where numerical integration is performed using NAG libraries, and the integral is
taken in its Cauchy principal value sense. The X function is de"ned by

X(k)"tan~1
Y@

m
(k)

J@
m
(k)

$

n
2
, G

(#), m"0,

(!), mO0.H (11)

When calculating the X function it is necessary to include its phase, which is
given by X(0)"0, X( j@

ms
)"(s!1)n when mO0. However, for m"0, one must

use X( j@
ms

)"sn.

3. ANALYSIS OF PROBLEM

Keller's geometrical theory of di!raction gives a representation of the
singly-di!racted "eld using a canonical di!raction coe$cient determined from
Sommerfeld's exact solution for di!raction of a plane scalar wave by a half-plane.
Using equation (20) of reference [12] the singly di!racted "eld can be represented
by

p
e1
"Dp

i
[s(1#o~1

1
s)]~1@2e*k0s. (12)

The incident mode is evaluated at the point of di!raction, which at any position on
the rim is given by x

0
"0 and r"a, greatly simplifying that part of the expression.

D is the canonical di!raction coe$cient, given by

D"

!e*n@4
2(2nk

0
)1@2 sin b C sec

1
2

(h
k
!a)#sec

1
2

(h
k
#a)D ,

where b is the angle between the incident ray and the edge and h
k

is the angle
between the rim and the projection of the di!racted ray in a plane normal to the
edge at the point of di!raction, that is, the r}x plane. The angle a denotes the angle
between the rim and the incident ray in a plane normal to the edge at the point of
di!raction. The ray exits the duct at h

ms
to the duct axis, giving a"h

ms
. The

de"nition of these angles gives a di!raction coe$cient slightly di!erent from that
used by Keller [11, 12] where h

K
and a

K
are measured from the normal to the edge.

That is, h
K
"h

k
#n/2, with the subscript K referring to the de"nition of the angles

used by Keller; the same substitution is used for a
K
. At a point in space towards the



Figure 3. De"nition of angles and distances used in di!raction method, where h
1

and h
2

are angles
measured between the rim and the projection of the di!racted ray in the r}x plane.

Figure 4. De"nition of angle d used in di!raction coe$cient.
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front of the duct rim, there will be contributions to the radiated "eld from two
points on the rim using the geometry described in Figure 3. In equation (12), !o

1
is the distance from the point of di!raction to a caustic, and for the mode angles
de"ned above it is given by

o~1
1

"!

cos d
a sin2b

, (13)

where d is de"ned as the angle between the di!racted ray and the normal to the
edge (pointing towards the centre of curvature). The de"nition of d

1,2
and its

relationship to h
1,2

is illustrated in Figure 4. As before, this angle is measured from
the projection of the di!racted ray in the r}x plane. Then, at a point in space, P,
towards the front of the duct, the singly di!racted "eld can be written as

p
e1,2

(P)"!

p
0
e*m(~*ut

4(2nk
0
)1@2

e*m({r1`*k0(x0`s1)`*n@4

[s
1
(sin2b#(s

1
/a) sin h

1
)]1@2

H
m
(k

r
r)

]Csec
1
2

(h
1
!h

ms
)#sec

1
2

(h
1
#h

ms
)D
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!

p
0
e*m(~*ut

4(2nk
0
)1@2

e*m(@
r2`*k0(x0`s2)`*n@4

[s
2
(sin2 b#(s

2
/a) sin h

2
)]1@2

H
m
(k

r
r)

]Csec
1
2

(h
2
!h

ms
)#sec

1
2

(h
2
#h

ms
)D. (14)

To express the formula in the far "eld, let s
1
+R#aJcos2h

m
!cos2 h,

s
2
+R!aJcos2 h

m
!cos2 h, /@

r1
+cos~1(Jcos2h

m
!cos2 h/sin h) and /@

r2
+

n!cos~1(Jcos2 h
m
!cos2 h/sin h) using the far-"eld approximations to the conal

co-ordinates described earlier. To ensure that the de"nition of h agrees with that
used in a previous paper [10], let h

1
+n#h, h

2
+n!h. Finally, since s+RAa,

one may also write

Cs1Asin2 b#
s
1
a

sin h
1BD

1@2
+iA

R2

a
sin hB

1@2
,

Cs
2Asin2b#

s
2
a

sin h
2BD

1@2
+A

R2

a
sin hB

1@2
. (15)

Note that a factor !in/2 occurs in the phase of a ray originating at the h
1

position
indicating that it has crossed the caustic at h

m
in reaching a point P below the axis

in the loud zone. The location of the caustics and shadow boundaries in the far
"eld is illustrated in Figure 5. Substituting the various far-"eld identities into
equation (14) gives the singly di!racted "eld as

p
e1,2

(P)"
p
0
a1@2H (1)

m
( j@

ms
)

4(2nk
0
sin h)1@2R

expAim/!iut#ik
0
R#

imn
2 B(e*m!e~*m)

]Ccosec
1
2

(h#h
ms

)#cosec
1
2
(h!h

ms
)D,
Figure 5. Location of caustics and shadow boundaries in the far "eld.
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m"k
0
aJcos2 h

m
!cos2 h#m cos~1 A

1
sin h

Jcos2 h
m
!cos2 hB!

mn
2
!

n
4
.

(16)

Directivity formulae are obtained by considering the radiated power per unit solid
angle, where P

e
(P)"(1/2o

0
c) Dp

e
D2R2, and then expressing this in terms of the

power of the incident mode such that

P
e1,2

(P)"
P
i

2n2k
0
a sin h cos h

ms
cos2/

ms
Ccosec

1
2
(h#h

ms
)#cosec

1
2

(h!h
ms

)D
2

]cos2Ak
0
a Jcos2 h

m
!cos2 h#m cos~1 A

1
sin h

Jcos2 h
m
!cos2 hB!

mn
2
#

n
4B

][1#4/n2 j @2
ms

cos2/
ms

J2
m
( j @

ms
) (J2

m
( j @

ms
)#Y2

m
( j @

ms
))]~1, (17)

where

P
i
"

np2
0
a2

8co
0

cos h
ms

cos2/
ms

(J2
m
( j @

ms
)#Y2

m
( j @

ms
))

][1#4/n2 j @2
ms

cos2/
ms

J2
m
( j @

ms
) (J2

m
( j@

ms
)#Y2

m
( j @

ms
))]. (18)

Note that P
i
is di!erent from the incident power used for the exact solution, and for

numerical computation P
i
can be expressed as a function of Pwh

i
, with Pwh

i
"1 for

the directivity plots included here.
To obtain an expression for the "eld behind the duct rim, note that there will be

contributions to the radiated "eld from one of the terms in equation (16). Then,
using the approach used above, the radiated powder per unit solid angle behind the
duct is given by

P
e1,1

(P)"
P
i
[cosec 1

2
(h#h

ms
)#cosec 1

2
(h!h

ms
)]2

8n2k
0
a sinh cos h

ms
cos2/

ms

][1#4/n2 j @2
ms

cos2/
ms

J2
m
( j @

ms
) (J2

m
( j @

ms
)#Y2

m
( j @

ms
))]~1. (19)

The formulae obtained thus far are only valid in the loud zone; that is the region
h
m
)h)n!h

m
. Outside this region equations (17) and (19) become complex.

However, by noting that it is possible to write Jcos2 h
m
!cos2 h"

iJcos2 h!cos2 h
m
, where the expression in the J is positive in the quiet zone,

equation (16) can be re-formulated in the quiet zone. A formula for the singly



1252 S. T. HOCTER
di!racted "eld in the forward quiet zone is then obtained, such that

P
eq1,2

(P)"
P
i

4n2 k
0
a sin h Ccosec

1
2
(h#h

ms
)#cosec

1
2
(h!h

ms
)D

2

]
cosh(2m ln(1/sin h[Jcos2 h!cos2 h

m
#sin h

m
])!2k

0
a Jcos2 h!cos2 h

m
)

cos h
ms

cos2/
ms

[1#4/n2 j @2
ms

cos2/
ms

J2
m
( j @

ms
)(J2

m
( j @

ms
)#Y2

m
( j @

ms
))]

(20)

and the radiated power per unit solid angle in the rearward quiet zone is given by

P
eq1,1

(P)"
P
i

8n2k
0
a sin h Ccosec

1
2
(h#h

ms
)#cosec

1
2

(h!h
ms

)D
2

]
exp[2k

0
a Jcos2 h!cos2 h

m
!2m ln(1/sin h[Jcos2 h!cos2 h

m
#sin h

m
])]

cos h
ms

cos2/
ms

[1#4/n2 j @2
ms

cos2/
ms

J2
m
( j @

ms
)(J2

m
( j @

ms
)#Y2

m
( j @

ms
))]

.

(21)

For the formula in the rearward quiet zone, one takes a ray originating from the h
2

position, since it can be seen from Figure 3 that to the rear of the duct, a ray from
the h

1
position will be &&trapped'' within the duct contributing towards the re#ected

"eld.

4. DISCUSSION OF RESULTS

The accuracy of the singly di!racted "eld, derived with the GTD method as
presented above can be compared to the exact solution for any permissible
combination of the mode angles h

m
, h

ms
and /

ms
. However, the choice of angles is

limited by the relationship m(j @
ms
(k

0
a which is determined by properties of

Bessel functions and the constraint upon propagating modes. Clearly, from
a geometrical point of view, it would be expected that h

ms
'h

m
, which simply

expresses that the principal lobe must be in the loud zone. The numerical results
presented in Figure 6 show a comparison of the exact solution (solid line) and the
GTD approximation (dashed line) for a number of values of h

ms
and /

ms
, with

results included for /
ms
"03 to illustrate the case of non-spinning modes. The

results are represented by radiated "eld directivity patterns showing radiated
power per unit solid angle where h"903 is perpendicular to the duct rim, and
h'903 represents the "eld behind the duct rim plane.

Throughout the directivity patterns, some common themes can be observed. As
expected, the formulae are singular at h

ms
, which corresponds to the shadow

boundary of geometrical optics. It was expected that there would be a broad region
where the approximation degrades, but adding contributions from two rays that



Figure 6. Directivity plots of radiated power per unit solid angle showing exact solution (solid line)
and singly di!racted GTD solution (dashed line). The parameters used are h

ms
+203, 403, 603 and

/
ms
+03, 203, 403 and 603.
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are singular at the mode ray angle limits the adverse e!ects of the singularity, except
in a region very close to h

ms
. For the directivity patterns of the spinning modes, the

GTD formulae are applicable to within a region of 13 either side of the shadow
boundary. This region is slightly larger for the non-spinning modes, although still
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not excessively so. Furthermore, at the transition between the loud and quiet zone,
the presence of a caustic a!ects the accuracy of the results. The e!ect of the caustic
at h

m
can also be seen for the m"0 case where the GTD approximation fails near

the forward axis, though this behaviour is not as severe as one increases k
0
a. The

discontinuity at the sideline which results from switching between the two-ray and
one-ray formula is also apparent. Fortunately, corresponding to the behaviour
observed with the ; approximation, [10], this discontinuity decreases as one
increases k

0
a. The approach used in taking a complex ray in the rearward quiet

zone has produced the exponential drop-o! at n!h
m

as predicted by the exact
solution. However, the behaviour has not been reproduced in the forward loud
zone and further consideration of the problem in this region is required.

This ray-theory-based approach to the problem is particularly suitable for
high-frequency approximations, as shown empirically by the lack of accuracy for
small k

0
a that diminishes as k

0
a increases. This pattern is apparent for all choices of

/
ms

. Moreover, this also corresponds to increasing h
ms

, which is equivalent to
varying k

0
a such that the frequency of the propagating mode approaches cut-o!,

i.e., k
0
a+j @

ms
. In this case, the incident ray propagates almost perpendicularly to

the duct axis, so that it di!racts from the rim of the duct at grazing incidence. It has
also been noted by Yee and Felsen [16] that problems arise when using ray theory
in situations with propagating rays striking an edge at grazing incidence. The
directivity patterns illustrate that increasing /

ms
has no signi"cant e!ects on the

accuracy of the GTD approximation, an observation also noted for both the
; approximation and the Kirchho! approximation. However, for su$ciently high
values of /

ms
, corresponding to the whispering gallery modes, we are unable to

obtain numerical results for the exact solution to allow for comparison with the
singly di!racted "eld.

In general, comparing these results with those obtained for other approximations
[10], the singly di!racted "eld is a better approximation than the Kirchho!
method, although is not as accurate as the ; approximation, provided we are far
from cut-o!. Expressions for the doubly and multiply di!racted "eld have also been
obtained, and as expected, these do not contribute a signi"cant amount to the total
"eld. Since the incident ray lies in the duct rim plane, it is necessary to use the
modi"ed di!raction coe$cient stated by Keller [12], and the shadow boundary for
the multiply di!racted formula is now located at the sideline. Finally, behind the
duct rim, assuming that there is a contribution from one ray for the radiated "eld
does indeed give the board lobe expected, although for some parameters the singly
di!racted "eld is separated from the exact solution. This phenomenon was also
observed with the; approximation, although it should be borne in mind that these
curves are plotted on logarithmic scales so that the loss in accuracy decreases as h

ms
decreases, corresponding to increase k

0
a.

5. CONCLUSIONS

This paper presents formulae that express the sound radiated from a semi-in"nite
cylindrical duct with Keller's geometrical theory of di!raction. The directivity
patterns presented illustrate that the singly di!racted "eld is a good
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approximation to the Wiener}Hopf solution in most regions in the far "eld, even
though the technique is much simpler to derive and compute than the exact
solution. A set of numerical results for "xed /

ms
and h

ms
are included, although any

set of results can be determined using the expressions presented previously. In
general, the singly di!racted "eld is a good approximation to the exact solution,
provided that one notes that ray-theory-based methods are only suitable for high
frequency approximations. Expressions for the doubly di!racted "eld can be easily
obtained using the modi"ed di!raction coe$cients, where the incident "eld is
obtained from the expressions for the singly di!racted "eld presented here. This
method can then be repeated to determine the total multiply di!racted "eld.
Although not shown, it can be observed that the contribution from the total
multiply di!racted "eld is signi"cantly less than the singly di!racted "eld. In fact,
the doubly di!racted "eld alone is of O ((k

0
a)~4)-factors of (k

0
a3)~1@2 from the

incident "eld and k
0
~3@2 from the di!raction coe$cient occur. These factors are

then squared when the radiated power per unit solid angle is determined. Similarly,
factors of a1@2 from the spreading factor and a2 from the incident power P

i
contribute to the 1/(k

0
a)4 behaviour.

When using Keller's method, it must be born in mind that it does have
well-known limitations; failing to predict the "eld correctly at shadow boundaries
and caustics. Fortunately, a great deal of research exists to correct the discrepancies
in these regions, as noted earlier. These do add some signi"cant complication to the
form of the results and a balance between the simple nature of the expressions
derived here and the more complicated forms required in fairly small regions in the
far "eld needs to be determined. Further investigation into the &&blow-up'' in
the forward loud zone is also required since this region alone does not exhibit the
expected behaviour. The e!ect of the geometry of the propagating mode is clearly
shown here, with the approximation ceasing to be accurate for large h

ms
. In this

case, that corresponds both to modes near cut-o!, and to small k
0
a. Interestingly,

no discernible pattern in the accuracy of the approximation can be observed for ray
geometry approaching the creeping structure of whispering gallery modes. This
could simply be a result of the choice of /

ms
being limited by the possible results

obtained from the exact solution, though another reason could be that the failings
of Keller's method are only speci"cally related to h

m
and h

ms
. Further results are

presented by the author [17] including numerical results for various other
parameter spaces and analytical formulae for the doubly and multiply di!racted
"eld.

Now that the basic cylindrical duct problem has been addressed, it is possible to
consider the addition of many of the extra complications to the problem that exist.
For example, a geometrical solution could be considered that encompasses bell
mouth ducts, duct liners, etc. It could be possible to consider the e!ects of mean
#ow using the Doppler factors presented by Chapman [7]. How the multiply
di!racted "eld is related to the ; approximation using the approach outlined by
Bowman et al. [18, p. 46, 47] could also be considered. For the case of the
plane parallel waveguide, they asymptotically expanded the ; approximation for
large k

0
a, showing that it gives an equivalent representation of the multiply

di!racted "eld.
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